All Issue

2019 Vol.37, Issue 4 Preview Page

August 2019. pp. 350-364
Abstract


References
1 

Allen B. L., Shin B. T., Cooper P. J. (1978), Analysis of Traffic Conflicts and Collisions (No. HS-025 846).

2 

Augenstein J., Perdeck E., Digges K., Bahouth G., Baur P., Borchers N. (2006), A More Effective Post-Crash Safety Feature to Improve the Medical Outcome of Injured Occupants (No. 2006-01-0675). SAE Technical Paper.

10.4271/2006-01-0675
3 

Bahouth G., Digges K., Schulman C. (2012), Influence of Injury Risk Thresholds on the Performance of an Algorithm to Predict Crashes with Serious injuries, In Annals of Advances in Automotive Medicine/Annual Scientific Conference, Association for the Advancement of Automotive Medicine, 56, 223.

4 

Brockfeld E., Kühne R. D., Wagner P. (2004), Calibration and Validation of Microscopic Traffic Flow Models, Transportation Research Record, 1876(1), 62-70.

10.3141/1876-07
5 

Chatterjee I., Davis G. A. (2016), Analysis of Rear-end Events on Congested Freeways by Using Video-recorded Shock waves, Transportation Research Record, 2583(1), 110-118.

10.3141/2583-14
6 

Cooper D. F., Ferguson N. (1976), Traffic Studies at T-Junctions. 2. A Conflict Simulation Record, Traffic Engineering & Control, 17(Analytic).

7 

Cunto F., Duong D., Saccomanno F. F. (2009), Comparison of Simulated Freeway Safety Performance with Observed Crashes, Transportation Research Record, 2103(1), 88-97.

10.3141/2103-11
8 

Essa M., Sayed T. (2018), Traffic Conflict Models to Evaluate the Safety of Signalized Intersections at the Cycle Level, Transportation Research Part C: Emerging Technologies, 89, 289-302.

10.1016/j.trc.2018.02.014
9 

Gettman D., Head L. (2003), Surrogate Safety Measures from Traffic Simulation Models, Transportation Research Record, 1840(1), 104-115.

10.3141/1840-12
10 

Hayward J. (1971), Near Misses as a Measure of Safety at Urban Intersections, Pennsylvania Transportation and Traffic Safety Center.

11 

Hossain M., Muromachi Y. (2013), Understanding Crash Mechanism on Urban Expressways Using High-resolution Traffic Data, Accident Analysis & Prevention, 57, 17-29.

10.1016/j.aap.2013.03.02423628939
12 

Jo Y., Oh C., Kim S. (2019), Estimation of Heavy Vehicle-involved Rear-end Crash Potential Using WIM Data, Accident Analysis & Prevention, 128, 103-113.

10.1016/j.aap.2019.04.00530991289
13 

Johnsson C., Laureshyn A., De Ceunynck T. (2018), In search of surrogate safety indicators for vulnerable road Users: A Review of Surrogate Safety Indicators, Transport Reviews, 38(6), 765-785.

10.1080/01441647.2018.1442888
14 

Kononen D. W., Flannagan C. A., Wang S. C. (2011), Identification and Validation of a Logistic Regression Model for Predicting Serious Injuries Associated with Motor Vehicle Crashes, Accident Analysis & Prevention, 43(1), 112-122.

10.1016/j.aap.2010.07.01821094304
15 

Laureshyn A., De Ceunynck T., Karlsson C., Svensson Å., Daniels S. (2017), In search of the severity dimension of traffic events: Extended Delta-V as a traffic conflict indicator, Accident Analysis & Prevention, 98, 46-56.

10.1016/j.aap.2016.09.02627690148
16 

Lubbe N., Kiuchi T. (2013), Injury Estimation for Advanced Automatic Collision Notification (AACN) in Germany.

17 

Mahmud S. S., Ferreira L., Hoque M. S., Tavassoli A. (2017), Application of Proximal Surrogate Indicators for Safety Evaluation: A Review of Recent Developments and Research Needs, IATSS Research, 41(4), 153-163.

10.1016/j.iatssr.2017.02.001
18 

Nishimoto T., Mukaigawa K., Tominaga S., Lubbe N., Kiuchi T., Motomura T., Matsumoto H. (2017), Serious Injury Prediction Algorithm Based on Large-scale Data and Under-triage Control, Accident Analysis & Prevention, 98, 266-276.

10.1016/j.aap.2016.09.02827776309
19 

Oh C., Kim T. (2010), Estimation of Rear-end Crash Potential Using Vehicle Trajectory Data, Accident Analysis & Prevention, 42(6), 1888-1893.

10.1016/j.aap.2010.05.00920728639
20 

Oh C., Park S., Ritchie S. G. (2006), A Method for Identifying Rear-end Collision Risks Using Inductive Loop Detectors, Accident Analysis & Prevention, 38(2), 295-301.

10.1016/j.aap.2005.09.00916246286
21 

Pande A., Abdel-Aty M. A. (2006), Application of Data Mining Techniques for Real-time Crash Risk Assessment on Freeways.

10.1061/40799(213)41
22 

Pérez K., Weijermars W., Bos N., Filtness A. J., Bauer R., Johannsen H., Olabarria M. (2018), Implications of Estimating Road Traffic Serious Injuries from Hospital Data, Accident Analysis & Prevention.

10.1016/j.aap.2018.04.00529680154
23 

Przybyla J., Taylor J., Jupe J., Zhou X. (2015), Estimating Risk Effects of Driving Distraction: A Dynamic Errorable Car-following Model, Transportation Research Part C: Emerging Technologies, 50, 117-129.

10.1016/j.trc.2014.07.013
24 

Shi X., Wong Y. D., Li M. Z. F., Chai C. (2018), Key Risk Indicators for Accident Assessment Conditioned on Pre-crash Vehicle Trajectory, Accident Analysis & Prevention, 117, 346-356.

10.1016/j.aap.2018.05.00729772388
25 

Wang C., Xu C., Dai Y. (2019), A Crash Prediction Method Based on Bivariate Extreme Value Theory and Video-based Vehicle Trajectory Data, Accident Analysis & Prevention, 123, 365-373.

10.1016/j.aap.2018.12.01330597330
26 

Xing L., He J., Abdel-Aty M., Cai Q., Li Y., Zheng O. (2019), Examining Traffic Conflicts of Up Stream Toll Plaza Area Using Vehicles’ Trajectory Data, Accident Analysis & Prevention, 125, 174-187.

10.1016/j.aap.2019.01.03430771587
27 

Xu C., Liu P., Wang W., Li Z. (2012), Evaluation of the Impacts of Traffic States on Crash Risks on Freeways. Accident Analysis & Prevention, 47, 162-171.

10.1016/j.aap.2012.01.02022405245
28 

Xu C., Tarko A. P., Wang W., Liu P. (2013), Predicting Crash Likelihood and Severity on Freeways with Real-time Loop Detector Data, Accident Analysis & Prevention, 57, 30-39.

10.1016/j.aap.2013.03.03523628940
29 

Zhao P., Lee C. (2018), Assessing Rear-end Collision Risk of Cars and Heavy Vehicles on Freeways Using a Surrogate Safety Measure, Accident Analysis & Prevention, 113, 149-158.

10.1016/j.aap.2018.01.03329407662
30 

Zheng L., Sayed T. (2019), From Univariate to Bivariate Extreme Value Models: Approaches to Integrate Traffic Conflict Indicators for Crash Estimation, Transportation Research Part C: Emerging Technologies, 103, 211-225.

10.1016/j.trc.2019.04.015
Information
  • Publisher :Korean Society of Transportation
  • Publisher(Ko) :대한교통학회
  • Journal Title :Journal of Korean Society of Transportation
  • Journal Title(Ko) :대한교통학회지
  • Volume : 37
  • No :4
  • Pages :350-364
  • Received Date :2019. 07. 03
  • Revised Date :2019. 07. 30
  • Accepted Date : 2019. 08. 23