All Issue

2018 Vol.36, Issue 2 Preview Page
April 2018. pp. 155-168
Abstract
In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/ Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.
본 연구는 단속류 도로에서 짧은 미래(5분 또는 10분)의 교차로 방향별 진입 교통량을 예측함에 앞서, 교차로 상류부 링크에서 교차로로 진입하는 방향별 패턴에 대한 연구를 수행하였고, 통행배정 모형과의 연계 및 활용을 통한 교통량 예측 가능성을 검토하였다. 분석 방법은 택시 DTG (Digital Tachograph) 자료(1주일)를 이용하여 2시간 단위로 구분된 교차로 방향별 교통량 비율을 변수로 클러스터 분석(Cluster analysis)을 수행하여 패턴의 유사성을 검토하였다. 또한, 통행배정 모형 결과와 연계를 위해 택시 DTG 자료와 교차로 중심의 5분 또는 10분 범위에 포함되는 영향권 비교 분석을 수행하였으며, 이를 위해 택시 DTG 자료와 통행배정 모형의 영향권 설정 알고리즘을 개발하였다. 분석 결과, 택시의 교차로 진입 패턴은 총 12개로 집합화 되었으며, 클러스터링의 신뢰 수준을 나타내는 Cubic Clustering Criterion은 6.92로 나타나 클러스터링 결과에 대한 신뢰성을 확보하였다. 통행배정 모형의 영향권 범위와 상관분석을 수행한 결과, 5분 영향권 범위에 대한 상관계수는 0.86으로 분석되어 유의한 결과를 도출하였다. 다만 10분 영향권 범위에서는 상관계수가 0.69로 다소 낮아지는 것으로 분석되었는데, 이는 통행량 및 네트워크 자료의 정밀성 부족에 따른 것으로 나타났다. 향후, 교통 분석용 네트워크의 정밀성과 시간대별 통행량의 정확성을 향상시켜 분석할 경우, 교차로 신호제어에 있어 통행배정 모형에서 산출된 교통량 자료를 활용할 수 있을 것으로 기대된다.
References
  1. Choi J. S. (2015), Multiple Intersection Traffic Signal Control Based on Traffic Pattern Learning, Graduate School of Kangwon National University, Chuncheon, South Korea.
  2. Heo T. Y., Park M. S., Eom J. K., Oh J. S. (2007), A Study on the Prediction of Traffic Counts Based on Shortest Travel Path, Korean Journal of Applied Statistics, 20(3), 459-473.10.5351/KJAS.2007.20.3.459
  3. Hong D. H., Kim J. H., Jang D. I., Lee T. W. (2017), The Study for Estimating Traffic Volumes on Urban Roads Using Spatial Statistic and Navigation Data, J. Korean Soc. Transp., 35(3), Korean Society of Transportation, 220-233.10.7470/jkst.2017.35.3.220
  4. Jia Z. Z., Jin X. C., Yuan Z. (2014), Traffic Volume Forecasting Based on Radial Basis Function Neural Network With the Consideration of Traffic Flows at the Adjacent, Transportation Research Part C 47, 139-154.10.1016/j.trc.2014.06.011
  5. Karsten G. B. (1981), Design of Zonal Systems for Aggregate Transportation Planning Models.
  6. Kim H. J. (1997), Traffic Signal Control Using Fuzzy-Neural Model and Prediction Method, Graduate School of Ewha Womans University, Seoul, South Korea.
  7. Kim I. H. (2003), A Study on the Classified Character of Probe Cars for Link Travel Time Data Collection, Graduate School of Myongji University, Yong-in, South Korea.
  8. Rea L. M., Parker R. A. (2005), Designing & Conducting Survey Research A Comprehensive Guide (3rd Edition).
  9. Sheffi Y. (1985), Urban Transportation Networks.
Information
Journal Informaiton Agriculture and Life Sciences Research Institute Journal of Korean Society of Transportation
  • NRF
  • KOFST
  • crossref crossmark
  • crosscheck
  • crossref cited-by
  • crossref funder-registry
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close