All Issue

2019 Vol.37, Issue 5 Preview Page

October 2019. pp. 422-429
Abstract


References
1 

Bhaskar A., Edward C. (2013) Fundamental understanding on the use of Bluetooth scanner as a complementary transport data, Transportation Research Part C, Emerging Technologies 37, 42-72.

10.1016/j.trc.2013.09.013
2 

Choi S., Yeo H., Kim J. (2018) Network-Wide Vehicle Trajectory Prediction in Urban Traffic Networks using Deep Learning, Transportation Research Record, 2672, 173-184.

10.1177/0361198118794735
3 

Gambs M., Killijian O., del Prado Cortez M. N. (2012), Next place prediction using mobility markov chains, in Proceedings of the First Workshop on Measurement, Privacy, and Mobility, ACM, 3.

10.1145/2181196.2181199
4 

Horvitz E., Krumm J. (2012), Some Help on the Way: Opportunistic routing under uncertainty, In Proceedings of the 2012 ACM conference on Ubiquitous Computing (371-380), ACM.

10.1145/2370216.2370273
5 

Kim J., Mahmassani H. S. (2015), Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories, Transportation Research Procedia, 9, 164-184.

10.1016/j.trpro.2015.07.010
6 

Kingma D. P., Ba J. (2014), Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.

7 

Krumm J., Horvitz E. (2006), Predestination: Inferring destinations from partial trajectories, In International Conference on Ubiquitous Computing (243-260), Springer, Berlin, Heidelberg.

10.1007/11853565_15
8 

Mathew W., Raposo R., Martins B. (2012), Predicting future locations with hidden Markov models, In Proceedings of the 2012 ACM conference on ubiquitous computing (911-918), ACM.

10.1145/2370216.2370421
9 

Mazimpaka J. D., Timpf S. (2016), Trajectory data mining: A review of methods and applications, Journal of Spatial Information Science, 2016(13), 61-99.

10.5311/JOSIS.2016.13.263
10 

Noulas A., Scellato S., Lathia N., Mascolo C. (2012), Mining user mobility features for next place prediction in location-based services, In 2012 IEEE 12th international conference on data mining (1038-1043), IEEE.

10.1109/ICDM.2012.113
11 

Phillips D. J., Wheeler T. A., Kochenderfer M. J. (2017), Generalizable intention prediction of human drivers at intersections, In 2017 IEEE Intelligent Vehicles Symposium (IV)(1665-1670), IEEE.

10.1109/IVS.2017.7995948
12 

Rodemerk C., Winner H., Kastner R. (2015), Predicting the driver’s turn intentions at urban intersections using context-based indicators, In 2015 IEEE Intelligent Vehicles Symposium (IV) (964-969), IEEE.

10.1109/IVS.2015.7225809
13 

Wang, G., Kim, J. (2016), The prediction of traffic congestion and incident on urban road networks using naive bayes classifier, In Australasian transport research forum 2016 proceedings, Melbourne, Australia.

14 

Xue A. Y., Qi J., Xie X., Zhang R., Huang J., Li Y. (2015), Solving the data sparsity problem in destination prediction, The VLDB Journal-The International Journal on Very Large Data Bases, 24(2), 219-243.

10.1007/s00778-014-0369-7
15 

Ziebart B. D., Maas A. L., Dey A. K., Bagnell J. A. (2008), Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior, In Proceedings of the 10th international conference on Ubiquitous computing (322-331), ACM.

10.1145/1409635.1409678
16 

Zyner A. G. (2018), Naturalistic Driver Intention and Path Prediction using Machine Learning.

10.1109/TITS.2019.2913166
Information
  • Publisher :Korean Society of Transportation
  • Publisher(Ko) :대한교통학회
  • Journal Title :Journal of Korean Society of Transportation
  • Journal Title(Ko) :대한교통학회지
  • Volume : 37
  • No :5
  • Pages :422-429
  • Received Date :2019. 06. 28
  • Revised Date :2019. 07. 30
  • Accepted Date : 2019. 09. 03