All Issue

2020 Vol.38, Issue 3 Preview Page

Article


June 2020. pp. 190-207
Abstract


References
1 

Amin S. H., Zhang G., Akhtar P. (2016), Effects of Uncertainty on a Tire Closed-loop Supply Chain Network, Expert Systems with Applications, 73, 82-91.

10.1016/j.eswa.2016.12.024
2 

Chen S. C., Kuo S. Y., Chang K. W., Wang. Y. T. (2012), Improving the Forecasting Accuracy of Air Passenger and Air Cargo Demand: The Application of Back-propagation Neural Networks, Journal of Transportation Planning and Technology, 35(3), 373-392.

10.1080/03081060.2012.673272
3 

Gharehgozli A. H., Yu Y., Koster R. D., Udding J. T. (2014), A Decision-tree Stacking Heuristic Minimising the Expected Number of Reshuffles at a Container Terminal, International Journal of Production Research, 2014, 52(9), 2592-2611.

10.1080/00207543.2013.861618
4 

Hartigan J. A. (1975), Clustering Algorithms, John Wiley and Sons (Newyork), 330-340.

5 

Jang J. M., Lee B. H., Ko J. H. (2019), Determinants of Commute Time Satisfaction : Focusing on the Residents of Gyeonggi Province, Journal of Air Transport Management, 37(4), 290-301.

10.7470/jkst.2019.37.4.290
6 

Kim J. C., Son H. G., Park J. S. (2019), A Study on International Air Demand Forecasting by ARIMA-Intervention Model, J. Korean Soc. Transp., 37(1), Korean Society of Transportation, 51-65.

10.7470/jkst.2019.37.1.051
7 

Liu C., Hu Z., Li Y., Liu S. (2017), Forecasting Copper Prices by Decision Tree Learning, Resources Policy, 52, 427-434.

10.1016/j.resourpol.2017.05.007
8 

Lo W. W. L., Wan Y., Zhang A. (2015), Empirical Estimation of Price and Income Elasticities of Air Cargo Demand: The Case of Hong Kong, Transportation Research Part A: Policy and Practice, 78, 309-324.

10.1016/j.tra.2015.05.014
9 

Min K. C., Jun Y. I., Ha H. K. (2013), Forecasting the Air Cargo Demand With Seasonal ARIMA Model: Focusing on ICN to EU Route, J. Korean Soc. Transp., 31(3), Korean Society of Transportation, 3-18.

10.7470/jkst.2013.31.3.003
10 

Repko M. G. J., Santos B. F. (2017), Scenario Tree Airline Fleet Planning for Demand Uncertainty, Journal of Air Transport Management, 65, 198-208.

10.1016/j.jairtraman.2017.06.010
11 

Shin H. J., Lee G. W. (2019), Factors Affecting Air Cargo Demand: Focus on Trade Volumes between South Korea and Intra-Asia, KOREA INTERNATIONAL COMMERCE REVIEW, 34(3), 191-214.

12 

Suryani E., Chou S. Y., Chen C. H. (2012), Dynamic Simulation Model of Air Cargo Demand Forecast and Terminal Capacity Planning, Simulation Modelling Practice and Theory, 28, 27-41.

10.1016/j.simpat.2012.05.012
13 

Wu P. J., Chen M. C., Tsau C. K. (2017), The Data-driven Analytics for Investigating Cargo Loss in Logistics Systems, International Journal of Physical Distribution & Logistics Management, 47(1), 68-83.

10.1108/IJPDLM-02-2016-0061
14 

Xu S., Chan H. K., Zhang T. (2019), Forecasting the Demand of the Aviation Industry Using Hybrid Time Series SARIMA-SVR Approach, Transportation Research Part E 122, 169-180.

10.1016/j.tre.2018.12.005
15 

Yu Z., Haghighat F., Fung B. C. M., Yoshino H. (2010), A Decision Tree Method for Building Energy Demand Modeling, Energy and Buildings, 42(10), 1637-1646.

10.1016/j.enbuild.2010.04.006
16 

Zhang A., Zhang Y. (2002), Issues on Liberalization of Air Cargo Services in International Aviation, Journal of Air Transport Management, 8(5), 275-287.

10.1016/S0969-6997(02)00008-X
Information
  • Publisher :Korean Society of Transportation
  • Publisher(Ko) :대한교통학회
  • Journal Title :Journal of Korean Society of Transportation
  • Journal Title(Ko) :대한교통학회지
  • Volume : 38
  • No :3
  • Pages :190-207
  • Received Date :2020. 04. 01
  • Revised Date :2020. 04. 26
  • Accepted Date : 2020. 06. 04