All Issue

2025 Vol.43, Issue 2

Article

30 April 2025. pp. 121-144
Abstract
References
1

Angkhawey U., Muangsin V. (2018), Detecting Points of Interest in A City from Taxi GPS with Adaptive DBSCAN, Proceedings of the 2018 Seventh ICT International Student Project Conference (ICT-ISPC), 1-6, IEEE.

10.1109/ICT-ISPC.2018.8523966
2

Ankerst M., Breunig M. M., Kriegel H. P., Sander J. (1999), OPTICS: Ordering Points to Identify the Clustering Structure, ACM Sigmod Record, 28(2), 49-60.

10.1145/304181.304187
3

Bai X., Xie Z., Xu X., Xiao Y. (2023), An Adaptive Threshold Fast DBSCAN Algorithm with Preserved Trajectory Feature Points for Vessel Trajectory Clustering, Ocean Engineering, 280, 114930, 1-14.

10.1016/j.oceaneng.2023.114930
4

Casas I. (2007), Social Exclusion and the Disabled: An Accessibility Approach, The Professional Geographer, 59(4), 463-477.

10.1111/j.1467-9272.2007.00635.x
5

Choi Y. M., Seo H. L., Park S. H. (2011), Walking Destinations and Boundaries of Everyday Lives in Residential Areas - Community Design Implications Based on Residents' Actual Walking Patterns Drawn from GPS and Travel Log Data in Bukchon, Seoul, Journal of the Architectural Institute of Korea Planning & Design, 27(8), 91-102.

6

Deng Z., Hu Y., Zhu M., Huang X., Du B. (2015), A Scalable and Fast OPTICS for Clustering Trajectory Big Data, Cluster Computing, 18, 549-562.

10.1007/s10586-014-0413-9
7

Gong L., Yamamoto T., Morikawa T. (2018), Identification of Activity Stop Locations in GPS Trajectories by DBSCAN-TE Method Combined with Support Vector Machines, Transportation Research Procedia, 32, 146-154.

10.1016/j.trpro.2018.10.028
8

Heo J., Hwang S., Moon J., You J., Kim H., Cha J., et al. (2024), A Framework of Transportation Mode Detection for People with Mobility Disability, Journal of Intelligent Transportation Systems, 1-16.

10.1080/15472450.2024.2329901
9

Hwang S., Evans C., Hanke T. (2017), Detecting Stop Episodes from GPS Trajectories with Gaps, Seeing Cities Through Big Data: Research, Methods and Applications in Urban Informatics, 427-439.

10.1007/978-3-319-40902-3_23
10

Hwang S., Heo J., Cho Y., Moon J., Lee Y., Kim H., et al. (2024), Transportation Mode Detection Technology to Predict Wheelchair Users' Life Satisfaction in Seoul, South Korea, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 8(1), 1-20.

10.1145/3643506
11

Jiang G., Lam S. K., He P., Ou C., Ai D. (2020), A Multi-Scale Attributes Attention Model for Transport Mode Identification, IEEE Transactions on Intelligent Transportation Systems, 23(1), 152-164.

10.1109/TITS.2020.3008469
12

Joubert J. W., Axhausen K. W. (2011), Inferring Commercial Vehicle Activities in Gauteng, South Africa, Journal of Transport Geography, 19(1), 115-124.

10.1016/j.jtrangeo.2009.11.005
13

Juhász, L., & Hochmair, H. H. (2020). Studying Spatial and Temporal Visitation Patterns of Points of Interest Using SafeGraph Data in Florida. GI_Forum, 1, 119-136.

10.1553/giscience2020_01_s119
14

Kim C. S., Lee D. H., Lee J. H., Kwon S. H., Chung M. K. (2010), Effects of Ramp Slope and Height on Usability and Physiology During Wheelchair Driving, Journal of the Ergonomics Society of Korea, 29(4), 681-686.

10.5143/JESK.2010.29.4.681
15

Kim E. S., Lee J. S., Kim J. H., Kim M. H. (2016), A Study on Walking Speed of the Disabled by Welfare Center Classification, The Korean Society of Safety, 31(5), 124-132.

10.14346/JKOSOS.2016.31.5.124
16

Kim Y. G. (2005), The Analysis Study of Life-Style for Efficient Occupational Performance, Korean Journal of Occupational Therapy, 13(2), 51-71.

17

Kim Y., Lee S. (2025), Neighborhood-Level Determining Factors of Travel Distance by Trip Purpose: Policy Implications for the N-Minute City, Cities, 156, 105464, 1-13.

10.1016/j.cities.2024.105464
18

Korea Institute for Health and Social Affairs (KIHASA) (2023), 2023 Survey on the Actual Conditions of Persons with Disabilities, Ministry of Health and Welfare. https://www.kihasa.re.kr, 2024. 05. 21.

19

Krizek K. J. (2003), Neighborhood Services, Trip Purpose, and Tour-Based Travel, Transportation, 30, 387-410.

10.1023/A:1024768007730
20

Krupa T., McLean H., Eastabrook S., Bonham A., Baksh L. (2003), Daily Time Use as a Measure of Community Adjustment for Persons Served by Assertive Community Treatment Teams, The American Journal of Occupational Therapy, 57(5), 558-565.

10.5014/ajot.57.5.55814527118
21

Kwon H. C., Kong J. Y. (2005), Characteristics of the Buttock Interface Pressure According to Wheelchair Propulsion Speed and Various Back Reclined Seating Position, Korean Research Society of Physical Therapy, 12(2), 1-10.

22

Kwon K. H. (2023), Exploring the Impact of Trip-Chaining on Commute Mode Choice in the U.S.. GRI Research Review, 25(2), 33-51.

23

Lee H. J., Noh S. M., Kang Y. O. (2023), Method for Deriving Staying Point of Smartphone GPS Trajectory and Creating Contextual Information, Journal of the Korean Cartographic Association, 23(2), 61-72.

10.16879/jkca.2023.23.2.061
24

Lee J. M., Lee S. G. (2023), Analysis of Characteristics of Call Taxi Usage and Factors Influencing the Waiting Time for the Mobility Disabled in Seoul, Korea: Using the Disability Call Taxi Big Data and Community Detection, Journal of Korea Planning Association, 58(1), 75-90.

10.17208/jkpa.2023.02.58.1.75
25

Lee K. J., Ryu I. G. (2020), Development of Bicyclists' Route Choice Model Considering Slope Gradient, The Korean Society of Intelligent Transport Systems, 19(3), 62-74.

10.12815/kits.2020.19.3.62
26

Lee Y. S. (2019), A Study of Mobility Patterns Between People with Disabilities and Those without Disabilities: Focusing on the Time Dimension, Disability & Employment, 29(4), 97-119.

27

Lee Y. S., Kim H. S. (2019), An Exploratory Study of the Effect of Mobility on Social Exclusion Among People with Disabilities, Health and Social Welfare Review, 39(1), 136-165.

10.15709/hswr.2019.39.1.136
28

Lee Y., Oh S., Cha J., Kim K., Lee S. Y., Kim H. (2022), Mobility and Life Satisfaction Among Wheelchair Users: A Study Using Mobile Phone Data in Seoul, South Korea, International Journal of Social Welfare, 31(3), 368-381.

10.1111/ijsw.12529
29

Li L., Zhu J., Zhang H., Tan H., Du B., Ran B. (2020), Coupled Application of Generative Adversarial Networks and Conventional Neural Networks for Travel Mode Detection Using GPS Data, Transportation Research Part A: Policy and Practice, 136, 282-292.

10.1016/j.tra.2020.04.005
30

Monreale A., Pinelli F., Trasarti R., Giannotti F. (2009), WhereNext: A Location Predictor on Trajectory Pattern Mining, In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 637-646.

10.1145/1557019.1557091
31

Moreno C., Allam Z., Chabaud D., Gall C., Pratlong F. (2021), Introducing the "15-Minute City": Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities, Smart Cities, 4(1), 93-111.

10.3390/smartcities4010006
32

Oh B. R. (2014), A Study on Travel Characteristics and the Establishment of Criterion for the Size of the Neighborhood Unit by Using the Data of Household Travel Diary Survey in Seoul, Seoul Studies, 15(3), 1-18.

33

Park S. J., Jeong W. K. (2022), Types of Use of Mobility Support Resources for People with Disabilities and Exploring Related Factors, The Journal of Convergence Society and Public Policy, 16(1), 3-30.

10.37582/CSPP.2022.16.1.3
34

Primerano F., Taylor M. A., Pitaksringkarn L., Tisato P. (2008), Defining and Understanding Trip Chaining Behaviour, Transportation, 35, 55-72.

10.1007/s11116-007-9134-8
35

Scheiner J., Holz-Rau C. (2017), Women's Complex Daily Lives: A Gendered Look at Trip Chaining and Activity Pattern Entropy in Germany, Transportation, 44, 117-138.

10.1007/s11116-015-9627-9
36

Schneider F., Ton D., Zomer L. B., Daamen W., Duives D., Hoogendoorn-Lanser S., et al. (2021), Trip Chain Complexity: A Comparison Among Latent Classes of Daily Mobility Patterns, Transportation, 48, 953-975.

10.1007/s11116-020-10084-1
37

Seoul Metropolitan City Smart City Policy Director (2021), Seoul Movement Data Manual, Korea Transport Institute Transportation Big Data Research Division, KT AI/Big Data Business Division.

38

Shi H., Huang H., Ma D., Chen L., Zhao M. (2023), Capturing Urban Recreational Hotspots from GPS Data: A New Framework in the Lens of Spatial Heterogeneity, Computers, Environment and Urban Systems, 103, 101972.

10.1016/j.compenvurbsys.2023.101972
39

Shiftan Y. (1998), Practical Approach to Model Trip Chaining, Transportation Research Record, 1645(1), 17-23.

10.3141/1645-03
40

Siła-Nowicka K., Vandrol J., Oshan T., Long J. A., Demšar U., Fotheringham A. S. (2016), Analysis of Human Mobility Patterns from GPS Trajectories and Contextual Information, International Journal of Geographical Information Science, 30(5), 881-906.

10.1080/13658816.2015.1100731
41

Stanley J., Stanley J., Balbontin C., Hensher D. (2019), Social Exclusion: The Roles of Mobility and Bridging Social Capital in Regional Australia, Transportation Research Part A: Policy and Practice, 125, 223-233.

10.1016/j.tra.2018.05.015
42

Statistics Korea (2009), 2009 Guidelines for the Time Use Survey, http://kostat.go.kr, 2024. 12. 27.

43

Tong Z., An R., Zhang Z., Liu Y., Luo M. (2022), Exploring Non-Linear and Spatially Non-Stationary Relationships Between Commuting Burden and Built Environment Correlates, Journal of Transport Geography, 104, 103413.

10.1016/j.jtrangeo.2022.103413
44

van Dülmen C., Šimon M., Klärner A. (2022), Transport Poverty Meets Car Dependency: A GPS Tracking Study of Socially Disadvantaged Groups in European Rural Peripheries, Journal of Transport Geography, 101, 103351.

10.1016/j.jtrangeo.2022.103351
45

Velho R., Holloway C., Symonds A., Balmer B. (2016), The Effect of Transport Accessibility on the Social Inclusion of Wheelchair Users: A Mixed Method Analysis, Social Inclusion, 4(3), 24-35.

10.17645/si.v4i3.484
46

Verghese J., Holtzer R., Lipton R. B., Wang C. (2012), Mobility Stress Test Approach to Predicting Frailty, Disability, and Mortality in High‐Functioning Older Adults, Journal of the American Geriatrics Society, 60(10), 1901-1905.

10.1111/j.1532-5415.2012.04145.x23002714PMC3470773
47

Wang C., Luo H., Zhao F., Qin Y. (2020), Combining Residual and LSTM Recurrent Networks for Transportation Mode Detection Using Multimodal Sensors Integrated in Smartphones, IEEE Transactions on Intelligent Transportation Systems, 22(9), 5473-5485.

10.1109/TITS.2020.2987598
48

Wang J., Zha Y. (2024), Do Urban Form Characteristics Perpetuate Disparities of Pandemic-Induced Mobility Changes? Evidence from Fulton County, Georgia, Travel Behaviour and Society, 36, 100803, 1-11.

10.1016/j.tbs.2024.100803
49

Wang L., Chen P., Chen L., Mou J. (2021), Ship AIS Trajectory Clustering: An HDBSCAN-Based Approach, Journal of Marine Science and Engineering, 9(6), 566.

10.3390/jmse9060566
50

Wang X., Zhang Z., Luo Y. (2022), Clustering Methods Based on Stay Points and Grid Density for Hotspot Detection, ISPRS International Journal of Geo-Information, 11(3), 190.

10.3390/ijgi11030190
51

Xiang L., Gao M., Wu T. (2016), Extracting Stops from Noisy Trajectories: A Sequence Oriented Clustering Approach, ISPRS International Journal of Geo-Information, 5(3), 29.

10.3390/ijgi5030029
52

Yang L., Hu L., Wang Z. (2019), The Built Environment and Trip Chaining Behaviour Revisited: The Joint Effects of the Modifiable Areal Unit Problem and Tour Purpose, Urban Studies, 56(4), 795-817.

10.1177/0042098017749188
53

Yazdizadeh A., Patterson Z., Farooq B. (2019), Ensemble Convolutional Neural Networks for Mode Inference in Smartphone Travel Survey, IEEE Transactions on Intelligent Transportation Systems, 21(6), 2232-2239.

10.1109/TITS.2019.2918923
54

Ye X., Pendyala R. M., Gottardi G. (2007), An Exploration of the Relationship Between Mode Choice and Complexity of Trip Chaining Patterns, Transportation Research Part B: Methodological, 41(1), 96-113.

10.1016/j.trb.2006.03.004
55

Ye Y., Zheng Y., Chen Y., Feng J., Xie X. (2009), Mining Individual Life Pattern Based on Location History, In 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, IEEE, 1-10.

10.1109/MDM.2009.11
56

Yeom J. H., Chung H. W., Choi J. Y., Sohn J. Y., Kwon K. S. (2012), Lifestyle Analysis of the Poor Using Time Use Survey and Time Geography: Implications for the Community Care Facilities, Korea Institute for Health and Social Affairs, 1-212.

57

Yuan J., Zheng Y., Xie X., Sun G. (2011), T-Drive: Enhancing Driving Directions with Taxi Drivers' Intelligence, IEEE Transactions on Knowledge and Data Engineering, 25(1), 220-232.

10.1109/TKDE.2011.200
58

Yuan N. J., Zheng Y., Xie X., Wang Y., Zheng K., Xiong H. (2014), Discovering Urban Functional Zones Using Latent Activity Trajectories, IEEE Transactions on Knowledge and Data Engineering, 27(3), 712-725.

10.1109/TKDE.2014.2345405
59

Zheng Y. (2015), Trajectory Data Mining: An Overview, ACM Transactions on Intelligent Systems and Technology (TIST), 6(3), 1-41.

10.1145/2743025
60

Zheng Y., Xie X. (2011), Learning Travel Recommendations from User-Generated GPS Traces, ACM Transactions on Intelligent Systems and Technology (TIST), 2(1), 1-29.

10.1145/1889681.1889683
61

Zhu Y., Zheng Y., Zhang L., Santani D., Xie X., Yang Q. (2012), Inferring Taxi Status Using GPS Trajectories, arXiv preprint arXiv:1205.4378, 1-13.

Information
  • Publisher :Korean Society of Transportation
  • Publisher(Ko) :대한교통학회
  • Journal Title :Journal of Korean Society of Transportation
  • Journal Title(Ko) :대한교통학회지
  • Volume : 43
  • No :2
  • Pages :121-144
  • Received Date : 2024-09-19
  • Revised Date : 2024-10-07
  • Accepted Date : 2025-02-10