Article
Choi S. H., Do M. S., You S. H., Cho C. S. (2018), Determination of Visual Based Asphalt Pavement Crack Condition Using Deep Learning, International Journal of Highway Engineering, 20(5), 75-83.
10.7855/IJHE.2018.20.5.075Choi S. H., Do M. S., Han D. S., Sim H. J., Chae C. D. (2019), Estimation of Road Pavements Life Expectancy by Bayesian Markov Mixture Hazard Model, International Journal of Highway Engineering, 21(6), 57-67.
10.7855/IJHE.2019.21.6.057Do M. S. (2011), Comparative Analysis on Mean Life Reliability with Functionally Classified Pavement Sections, Korean Society of Civil Engineers Journal of Civil Engineering, 15(2), 261-270.
10.1007/s12205-011-1065-4Do M. S., Kwon S. A., Lee S. H., Kim Y. J. (2014), Development of the Decision-Making System for National Highway Pavement Management, KSCE Journal of Civil and Environmental Engineering Research, 34(2), 645-654.
10.12652/Ksce.2014.34.2.0645Geweke J. (1992), Evaluating the Accuracy of Sampling-based Approaches to Calculating Posterior Moments, In Bernardo, J. M., Berger J. O., Dawid, A. P., Smith, A. F. M. eds. Bayesian Statistics 4, Oxford, Clarendon Press, 169-193.
10.1093/oso/9780198522669.003.0010Guo P., Meng W., Bao Y. (2021), Automatic Identification and Quantification of Dense Microcracks in High- Performance Fiber-Reinforced Cementitious Composites through Deep Learning-Based Computer Vision, Cement and Concrete Research, 148(1).
10.1016/j.cemconres.2021.106532Ha J. W., Park K. W., Kim M. S. (2021), A Development of Road Crack Detection System Using Deep Learning-based Segmentation and Object Detection, The Journal of Society for e-Business Studies, 26(1), 93-106.
Han D. S., Kobayashi K., Do M. S. (2013), Section-based Multifunctional Calibration Method for Pavement Deterioration Forecasting Model, KSCE J. of Civil Engineering, 17(2), 386-394.
10.1007/s12205-013-1934-0Han D. S., Do M. S. (2016), Evaluation of Socio-environmental effects considering road service levels for transportation asset management, Journal of Testing and Evaluation, 44(1), 679-691.
10.1520/JTE20140484Han D. S., Kaito K., Kobayashi K., Aoki K. (2016), Performance Evaluation of Advanced Pavement Materials by Bayesian Markov Mixture Hazard Model, Korean Society of Civil Engineers Journal of Civil Engineering, 20(2), 729-737.
10.1007/s12205-015-0375-3Kobayashi K., Do M. S., Han D. S. (2010), Estimation of Markovian Transition Probabilities for Pavement Deterioration Forecasting, Korean Society of Civil Engineers Journal of Civil Engineering, 14, 343-351.
10.1007/s12205-010-0343-xKobayashi K., Kaito K., Nam L. T. (2012), A Bayesian Estimation Method to Improve Deterioration Prediction for Infrastructure System with Markov Chain Model, International Journal of Architecture, Engineering and Construction, 1(1), 1-13.
10.7492/IJAEC.2012.001Mandal V., Uong L., Adu-Gyamfi Y. (2018), Automated road Crack Detection using Deep Convolutional Neural Networks, In 2018 IEEE International Conference on Big Data (Big Data), 5212-5215.
10.1109/BigData.2018.8622327Ministry of Land, Infrastructure and Transport(MOLIT) (2021), Final-Report of the National Highway Pavement Management System 2020.
Park J. G., Kim C. H., Choi S. H., Do M. S. (2022), Development of Deterioration Model for Cracks in Asphalt Pavement Using Deep Learning-Based Road Asset Monitoring System, The Journal of the Korea Institute of Intelligent Transportation System, 21(5), 133-148.
10.12815/kits.2022.21.5.133- Publisher :Korean Society of Transportation
- Publisher(Ko) :대한교통학회
- Journal Title :Journal of Korean Society of Transportation
- Journal Title(Ko) :대한교통학회지
- Volume : 42
- No :2
- Pages :168-179
- Received Date : 2023-12-13
- Revised Date : 2024-01-18
- Accepted Date : 2024-03-08
- DOI :https://doi.org/10.7470/jkst.2024.42.2.168