Article
Aziz H. A., Nagle N. N., Morton A. M., Hilliard M. R., White D. A., Stewart R. N. (2018), Exploring The Impact of Walk-Bike Infrastructure, Safety Perception, And Built-Environment on Active Transportation Mode Choice: A Random Parameter Model Using New York City Commuter Data, Transportation, 45, 1207-1229.
10.1007/s11116-017-9760-8Brodsky I. (2018), H3: Uber's Hexagonal Hierarchical Spatial Index, https://eng.uber.com/h3/, 2019. 06. 22
Chen J., Yang S. T., Li H. W., Zhang B., Lv J. R. (2013), Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks), The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 47-50.
10.5194/isprsarchives-XL-4-W3-47-2013Currie G. (2010), Quantifying Spatial Gaps in Public Transport Supply Based on Social Needs, Journal of Transport Geography, 18(1), 31-41.
10.1016/j.jtrangeo.2008.12.002Desai A., Patel C. R. (2023), Leveraging GIS to Deploy Demand-Driven Public Charging Infrastructure in An Indian Metropolitan City, Spatial Information Research, 31(4), 467-474.
10.1007/s41324-023-00514-4Gao Y., Jiang D., Xu Y. (2018), Optimize Taxi Driving Strategies Based on Reinforcement Learning, International Journal of Geographical Information Science, 32(8), 1677-1696.
10.1080/13658816.2018.1458984Garcia F., Rachelson E. (2013), Markov Decision Processes, Markov Decision Processes in Artificial Intelligence, 1-38.
10.1002/9781118557426.ch1Hadimlioglu I. A., King S. A. (2019), Visualization of Flooding Using Adaptive Spatial Resolution, ISPRS International Journal of Geo-Information, 8(5), 204.
10.3390/ijgi8050204Howard R. A. (1960). Dynamic Programming and Markov Processes. MIT Press(Cambridge, Massachusetts), 39-47.
Kim A., Lim S. H. (2024), Study on Mobility Service Operational Strategies in Transportation-Underserved Rural Through the Analysis of Public Taxi Operational Status, J. Korean Soc. Transp., 42(1), Korean Society of Transportation, 60-76.
10.7470/jkst.2024.42.1.060Kim S.T., Sung K.Y., Kim J.C., Kim H. (2023), Exploring the Optimization of Demand Responsive Transit Vehicle Routing Using a Deep Q Network, J. Korean Soc. Transp., 41(6), Korean Society of Transportation, 724-738.
10.7470/jkst.2023.41.6.724Koorey G. (2009), Using an Interactive Display to Demonstrate Transportation Planning and Design Issues: Getting from A to B, Transportation Research Record, 2109(1), 31-36.
10.3141/2109-04Luo J., Zhang W., Su J., Xiang F. (2019), Hexagonal Convolutional Neural Networks for Hexagonal Grids, IEEE Access, 7, 142738-142749.
10.1109/ACCESS.2019.2944766Luo M., Zhang W., Song T., Li K., Zhu H., Du B., Wen H. (2021), Rebalancing Expanding EV Sharing Systems with Deep Reinforcement Learning, In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 1338-1344.
10.24963/ijcai.2020/186Lv Y., Zhi D., Sun H., Qi G. (2021), Mobility Pattern Recognition Based Prediction for The Subway Station Related Bike-Sharing Trips, Transportation Research Part C: Emerging Technologies, 133, 103404.
10.1016/j.trc.2021.103404Miller P., de Barros A. G., Kattan L., Wirasinghe S. C. (2016), Public Transportation and Sustainability: A Review, KSCE Journal of Civil Engineering, 20(3), 1076-1083.
10.1007/s12205-016-0705-0Oh J., Kim J. (2021), Where to Ride? An Explorative Study to Investigate Potential Risk Factors of Personal Mobility Accidents, International Journal of Environmental Research and Public Health, 18(3), 965.
10.3390/ijerph1803096533499255PMC7908115Radzimski A., Dzięcielski M. (2021), Exploring The Relationship Between Bike-Sharing and Public Transport in Poznań, Poland, Transportation Research Part A: Policy and Practice, 145, 189-202.
10.1016/j.tra.2021.01.003Silver D., Huang A., Maddison C. J., Guez A., Sifre L., Van Den Driessche G., Hassabis D. (2016), Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature, 529(7587), 484-489.
10.1038/nature1696126819042Singh D., Singh B. (2020), Investigating The Impact of Data Normalization on Classification Performance, Applied Soft Computing, 97, 105524.
10.1016/j.asoc.2019.105524Son S. O., Park J. (2022), Identifying Micro-Level Hotspots of Urban Network Infrastructures Using GIS Data, J. Korean Soc. Transp., 40(4)
10.7470/jkst.2022.40.4.585Sutton R. S., Barto A. G. (2018), Reinforcement Learning: An Introduction, MIT Press(Cambridge, Massachusetts), 49
Tong Y., Shi D., Xu Y., Lv W., Qin Z., Tang X. (2021), Combinatorial Optimization Meets Reinforcement Learning: Effective Taxi Order Dispatching at Large-Scale, IEEE Transactions on Knowledge and Data Engineering, 35(10), 9812-9823.
10.1109/TKDE.2021.3127077Wang H., Tang H., Hao J., Hao X., Fu Y., Ma Y. (2020), Large Scale Deep Reinforcement Learning in War-games, In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1693-1699, IEEE.
10.1109/BIBM49941.2020.9313387Zagorskas J., Burinskienė M. (2019), Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities, Sustainability, 12(1), 273.
10.3390/su12010273- Publisher :Korean Society of Transportation
- Publisher(Ko) :대한교통학회
- Journal Title :Journal of Korean Society of Transportation
- Journal Title(Ko) :대한교통학회지
- Volume : 43
- No :1
- Pages :1-14
- Received Date : 2024-05-31
- Revised Date : 2024-07-18
- Accepted Date : 2025-01-02
- DOI :https://doi.org/10.7470/jkst.2025.43.1.001