All Issue

2024 Vol.42, Issue 5 Preview Page

Article

31 October 2024. pp. 579-594
Abstract
References
1

Ahmed A., Topuz K., Moqbel M., Abdulrashid I. (2023), What Makes Accidents Severe! Explainable Analytics Framework with Parameter Optimization, Eur. J. Oper. Res.

10.1016/j.ejor.2023.11.013
2

Alvarez J. A., Legler P. M., Dean S. N., Malanoski A. P., Naval Research Lab Washington DC. (2022), Applying Machine Learning with Model Interpretability for Sequence-based Protein Solubility Prediction.

3

Amini M., Bagheri A., Delen D. (2022), Discovering Injury Severity Risk Factors in Automobile Crashes: A Hybrid Explainable AI Framework for Decision Support, Reliab. Eng. Syst. Saf., 226, 108720.

10.1016/j.ress.2022.108720
4

Ashraf M. T., Dey K., Mishra S. (2023), Identification of High-risk Roadway Segments for Wrong-way Driving Crash using Rare Event Modeling and Data Augmentation Techniques, Accid. Anal. Prev., 181, 106933.

10.1016/j.aap.2022.10693336577242
5

Azevêdo L., Duarte H., Galvão D., Michima P., Veleda D., Kreuger A. (2021), Methodology for Maritime Risk Assessment in Ports due to Meteo-oceanographic Factors: The Case of the Port of Suape, Brazil, Risk Anal., 41(10), 1823-1839.

10.1111/risa.1367733472277
6

Budiyanto M. A., Fernanda H. (2020), Risk Assessment of Work Accident in Container Terminals using the Fault Tree Analysis Method, J. Mar. Sci. Eng., 8(6), 466.

10.3390/jmse8060466
7

Busan Port Terminal Co., Ltd. (2017), 2017 Busan Port Terminal Co., Ltd. Accident Casebook.

8

Busan Port Terminal Co., Ltd. (2019), 2018 Busan Port Terminal Co., Ltd. Accident Casebook.

9

Caelen O. (2017), A Bayesian Interpretation of the Confusion Matrix, Ann. Math. Artif. Intell., 81(3), 429-450.

10.1007/s10472-017-9564-8
10

Charrad M., Ghazzali N., Boiteau V., Niknafs A. (2014), NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set, J. Stat. Softw., 61, 1-36.

10.18637/jss.v061.i06
11

Chaturvedi A., Green P. E., Caroll J. D. (2001), K-modes Clustering, J. Classif., 18, 35-55.

10.1007/s00357-001-0004-3
12

Chauvin C., Lardjane S., Morel G., Clostermann J. P., Langard B. (2013), Human and Organisational Factors in Maritime Accidents: Analysis of Collisions at Sea using the HFACS, Accid. Anal. Prev., 59, 26-37.

10.1016/j.aap.2013.05.00623764875
13

Chin H. C., Debnath A. K. (2009), Modeling Perceived Collision Risk in Port Water Navigation, Saf. Sci., 47(10), 1410-1416.

10.1016/j.ssci.2009.04.004
14

Cohen I., Huang Y., Chen J., Benesty J., Benesty J., Chen J. et al. (2009), Pearson correlation coefficient, Noise Reduction in Speech Processing, 1-4.

10.1007/978-3-642-00296-0_5
15

Delen D., Sharda R., Bessonov M. (2006), Identifying Significant Predictors of Injury Severity in Traffic Accidents using a Series of Artificial Neural Networks, Accid. Anal. Prev., 38(3), 434-444.

10.1016/j.aap.2005.06.02416337137
16

Fabiano B., Currò F., Reverberi A. P., Pastorino R. (2010), Port Safety and the Container Revolution: A Statistical Study on Human Factor and Occupational Accidents over the Long Period, Saf. Sci., 48(8), 980-990.

10.1016/j.ssci.2009.08.007
17

Fuentes-Bargues J. L., González-Cruz M. C., González-Gaya C., Baixauli-Pérez M. P. (2017), Risk Analysis of a Fuel Storage Terminal using HAZOP and FTA, Int. J. Environ. Res. Public Health, 14(7), 705.

10.3390/ijerph1407070528665325PMC5551143
18

Guo M., Zhao X., Yao Y., Bi C., Su Y. (2022), Application of Risky Driving Behavior in Crash Detection and Analysis, Phys. A Stat. Mech. Appl., 591, 126808.

10.1016/j.physa.2021.126808
19

Islam Z., Abdel-Aty M., Cai Q., Yuan J. (2021), Crash data augmentation using variational autoencoder, Accid. Anal. Prev., 151, 105950.

10.1016/j.aap.2020.10595033370603
20

Jeni, L. A., Cohn, J. F., De La Torre, F. (2013, September), Facing imbalanced data--recommendations for the use of performance metrics. In 2013 Humaine association conference on affective computing and intelligent interaction (pp. 245-251), IEEE.

10.1109/ACII.2013.4725574450PMC4285355
21

Jeong H., Jang Y., Bowman P. J., Masou, N. (2018), Classification of Motor Vehicle Crash Injury Severity: A Hybrid Approach for Imbalanced Data, Accident Analysis & Prevention, 120, 250-261.

10.1016/j.aap.2018.08.02530173007
22

Khan R. U., Yin J., Mustafa F. S., Farea A. O. A. (2022), A Data Centered Human Factor Analysis Approach for Hazardous Cargo Accidents in a Port Environment, J. Loss Prev. Process Ind., 75, 104711.

10.1016/j.jlp.2021.104711
23

Kim D. H., Kim J. T. (2021), Development and Evaluation of LoT-based Conflict Prediction Model for Real-time Prevention of Vehicle Accident at Port Yard Intersection, J. Korean Soc. Transp., 39(4), Korean Society of Transportation, 516-525.

10.7470/jkst.2021.39.4.516
24

Korea Maritime Institute (2021), Development of Countermeasures at Ports Following the Enforcement of the Serious Accidents Punishment Act.

25

Lee S., Kim S., Kim J., Kim D., Heo T. Y. (2023), Multiclass Classification by Various Machine Learning Algorithms and Interpretation of the Risk Factors of Pedestrian Accidents using Explainable AI, Math. Probl. Eng., 29, 1-15

10.1155/2023/1956865
26

Lundber S. M., Lee S. I. (2017), A Unified Approach to Interpreting Model Predictions, Adv. Neural Inf. Process. Syst., 30.

27

Madushani J. S., Sandamal R. K., Meddage D. P. P., Pasindu H. R., Gomes P. A. (2023), Evaluating Expressway Traffic Crash Severity by using Logistic Regression and Explainable & Supervised Machine Learning Classifiers, Transp. Eng., 13, 100190.

10.1016/j.treng.2023.100190
28

Menardi G., Torelli N. (2014), Training and Assessing Classification Rules with Imbalanced Data, Data Min. Knowl. Discov., 28, 92-122.

10.1007/s10618-012-0295-5
29

Min G., Ka D., Chung S., Lee C. (2023), Development of an Explainable Traffic Flow Prediction Model using SHapley Additive exPlanation and elliptic bivariate relationship, J. Korean Soc. Transp., 41(2), Korean Society of Transportation, 239-253.

10.7470/jkst.2023.41.2.239
30

Morris C., Yang J. J. (2021), Effectiveness of Resampling Methods in Coping with Imbalanced Crash Data: Crash type Analysis and Predictive Modeling, Accid. Anal. Prev., 159, 106240.

10.1016/j.aap.2021.10624034144225
31

Park N. (2023), Assessment of Crash Risk Situations using Bayesian Inference and Machine Learning Techniques, Master's thesis, Hanyang University.

32

Qiao W., Liu Y., Ma X., Liu Y. (2020), Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network, Risk Anal., 40(5), 957-980.

10.1111/risa.1344431943299
33

Rigatti S. J. (2017), Random forest, J. Insur. Med., 47(1), 31-39.

10.17849/insm-47-01-31-39.128836909
34

Son S. O., Kim H., Park J. (2020), Methodology of Calibration for Falling Objects Accident-risk-zone Approach Detection Algorithm at Port Considering GPS Errors, J. Korean Inst. Intell. Transp. Syst., 19(6), 61-73.

10.12815/kits.2020.19.6.61
35

Son S. O., Park J., Oh C., Yeom C. (2021), An Algorithm for Detecting Collision Risk between Trucks and Pedestrians in the Connected Environment, J. Adv. Transp., 2021, 1-9.

10.1155/2021/9907698
36

Uğurlu Ö., Yıldız S., Loughney S., Wang J., Sharabidze I. (2020), Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea utilizing HFACS and Bayesian networks, Risk Anal., 40(12), 2610-2638.

10.1111/risa.1356832722857
37

Wen X., Xie Y., Jiang L., Pu Z., Ge T. (2021a), Applications of Machine Learning Methods in Traffic Crash Severity Modelling: Current Status and Future Directions, Transp. Rev., 41(6), 855-879.

10.1080/01441647.2021.1954108
38

Wen X., Xie Y., Wu L., Jiang L. (2021b), Quantifying and Comparing the Effects of Key Risk Factors on Various Types of Roadway Segment Crashes with LightGBM and SHAP, Accid. Anal. Prev., 159, 106261.

10.1016/j.aap.2021.10626134182322
39

Yang C., Chen M., Yuan Q. (2021), The Application of XGBoost and SHAP to Examining the Factors in Freight Truck-related Crashes: An Exploratory Analysis, Accid. Anal. Prev., 158, 106153.

10.1016/j.aap.2021.10615334034073
40

Zhang J., Teixeira Â. P., Soares C. G., Yan X. (2018), Quantitative Assessment of Collision Risk Influence Factors in the Tianjin Port, Saf. Sci., 110, 363-371.

10.1016/j.ssci.2018.05.002
41

Zhang, J., Chen, L. (2019), Clustering-based undersampling with random over sampling examples and support vector machine for imbalanced classification of breast cancer diagnosis, Comput. Assist. Surg., 24(sup2), 62-72.

10.1080/24699322.2019.1649074
42

Zhang, J., Teixeira Â. P., Guedes Soares C., Yan X., Liu K. (2016), Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks, Risk Anal., 36(6), 1171-1187.

10.1111/risa.1251926895225
43

Zhu L., Zhang Z., Song D., Chen B. (2024), Analysis of Traffic Accident Causes Based on Data Augmentation and Ensemble Learning with High-dimensional Small-sample Data, Expert Systems with Applications, 237, 121782.

10.1016/j.eswa.2023.121782
Information
  • Publisher :Korean Society of Transportation
  • Publisher(Ko) :대한교통학회
  • Journal Title :Journal of Korean Society of Transportation
  • Journal Title(Ko) :대한교통학회지
  • Volume : 42
  • No :5
  • Pages :579-594
  • Received Date : 2024-07-18
  • Revised Date : 2024-08-09
  • Accepted Date : 2024-09-23