All Issue

2024 Vol.42, Issue 1 Preview Page


29 February 2024. pp. 29-46
Abdelwahed A., Van Den Berg P. L., Brandt T., Ketter W. (2023), Balancing Convenience and Sustainability in Public Transport Through Dynamic Transit Bus Networks, Transportation Research Part C: Emerging Technologies, 151, 104100. 10.1016/j.trc.2023.104100
Advani C., Bhaskar A., Haque Md. M. (2022), Bi-level Clustering of Vehicle Trajectories for Path Choice set and its Nested Structure Identification, Transportation Research Part C: Emerging Technologies, 144, 103895. 10.1016/j.trc.2022.103895
Atasoy B., Ikeda T., Song X., Ben-Akiva M. E. (2015), The Concept and Impact Analysis of a Flexible Mobility on Demand System, Transportation Research Part C: Emerging Technologies, 56, 373-392. 10.1016/j.trc.2015.04.009
Babu D., Anjaneyulu M. V. L. R. (2021), Exploratory Analysis on Worker's Independent and Joint Travel Patterns During Weekdays and Weekends, Transportation Engineering, 5, 100073. 10.1016/j.treng.2021.100073
Basu R., Araldo A., Akkinepally A. P., Nahmias Biran B. H., Basak K., Seshadri R., Deshmukh N., Kumar N., Azevedo C. L., Ben-Akiva M. (2018), Automated Mobility-on-Demand vs. Mass Transit: A Multi-Modal Activity-Driven Agent-Based Simulation Approach, Transportation Research Record: Journal of the Transportation Research Board, 2672(8), 608-618. 10.1177/0361198118758630
Chen Y., Zhao Y., Tsui K. L. (2019), Clustering-based Travel Pattern Recognition in Rail Transportation System Using Automated Fare Collection Data, 2019 Prognostics and System Health Management Conference (PHM-Qingdao), 1-7. 10.1109/PHM-Qingdao46334.2019.8943009
Choi J. H., Kang M. H., Song J. I., Hwang K. Y. (2022), A Study on Introduction of Demand Responsive Transport(DRT) Rural-Urban Mixed Area, J. Korean Soc. Transp., 40(3), Korean Society of Transportation, 289-304. 10.7470/jkst.2022.40.3.289
Currie G., Fournier N. (2020), Why most DRT/Micro-Transits Fail: What the Survivors Tell Us about Progress, Research in Transportation Economics, 83, 100895. 10.1016/j.retrec.2020.100895
Cyril A., Mulangi R. H., George V. (2020), Demand-Based Model for Line Planning in Public Transport, Transportation Research Procedia, 48, 2589-2596. 10.1016/j.trpro.2020.08.252
Dean M. D., Kockelman K. M. (2021), Spatial Variation in Shared Ride-Hail Trip Demand and Factors Contributing to Sharing: Lessons from Chicago, Journal of Transport Geography, 91, 102944. 10.1016/j.jtrangeo.2020.102944
Estrada M., Mension J., Salicrú M. (2021), Operation of Transit Corridors Served by Two Routes: Physical Design, Synchronization, and Control Strategies, Transportation Research Part C: Emerging Technologies, 130, 103283. 10.1016/j.trc.2021.103283
Fekih M., Bonnetain L., Furno A., Bonnel P., Smoreda Z., Galland S. et al. (2022), Potential of Cellular Signaling Data for Time-of-Day Estimation and Spatial Classification of Travel Demand: A Large-Scale Comparative Study with Travel Survey and Land use Data, Transportation Letters, 14(7), 787-805. 10.1080/19427867.2021.1945854
Forouzandeh F., Arman H., Hadi-Vencheh A., Masoud Rahimi A. (2022), A combination of DEA and AIMSUN to Manage Big Data When Evaluating the Performance of Bus Lines, Information Sciences, 618, 72-86. 10.1016/j.ins.2022.10.044
Giorgino T. (2009), Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package, Journal of Statistical Software, 31(7), 1-24. 10.18637/jss.v031.i07
Gower J. C. (1971), A General Coefficient of Similarity and Some of Its Properties, Biometrics, 27(4), 857-871. 10.2307/2528823
Hamedmoghadam H., Vu H. L., Jalili M., Saberi M., Stone L., Hoogendoorn S. (2021), Automated Extraction of Origin-Destination Demand for Public Transportation from Smartcard Data with Pattern Recognition, Transportation Research Part C: Emerging Technologies, 129, 103210. 10.1016/j.trc.2021.103210
Ishii Y., Hayakawa K., Koide S., Chikaraishi M. (2022), Entropy Tucker Model: Mining Latent Mobility Patterns with Simultaneous Estimation of Travel Impedance Parameters, Transportation Research Part C: Emerging Technologies, 137, 103559. 10.1016/j.trc.2022.103559
Jiang Z., Tang Y., Gu J., Zhang Z., Liu W. (2023), Discovering Periodic Frequent Travel Patterns of Individual Metro Passengers Considering Different Time Granularities and Station Attributes, International Journal of Transportation Science and Technology. 10.1016/j.ijtst.2023.03.003
Kepaptsoglou K., Karlaftis M. (2009), Transit Route Network Design Problem: Review, Journal of Transportation Engineering, 135(8), 491-505. 10.1061/(ASCE)0733-947X(2009)135:8(491)
König A., Grippenkoven J. (2020), Travellers' Willingness to Share Rides in Autonomous Mobility on Demand Systems Depending on Travel Distance and Detour, Travel Behaviour and Society, 21, 188-202. 10.1016/j.tbs.2020.06.010
Korea Transport Database (2020), 2019 Traffic Analysis Data in Seoul Metropolitan Area: O/D and Network Data Manual, KTDB.
Korea Transportation Safety Authority (2015), A Study on the Establishment and Operation of Demand Response Transportation (DRT) System.
Li X., Quadrifoglio L. (2010), Feeder Transit Services: Choosing Between Fixed and Demand responsive Policy, Transportation Research Part C: Emerging Technologies, 18(5), 770-780. 10.1016/j.trc.2009.05.015
Li Z., Yan H., Zhang C., Tsung F. (2022), Individualized Passenger Travel Pattern Multi-Clustering Based on Graph Regularized Tensor Latent Dirichlet Allocation, Data Mining and Knowledge Discovery, 36(4), 1247-1278. 10.1007/s10618-022-00842-3
Liu S., Zhang F., Ji Y., Ma X., Liu Y., Li S. et al. (2023a), Understanding Spatial-Temporal Travel Demand of Private and Shared E-Bikes as a Feeder Mode of Metro Stations, Journal of Cleaner Production, 398, 136602. 10.1016/j.jclepro.2023.136602
Liu Y., Zuo X., Ai G., Zhao X. (2023b), A Construction-and-Repair Based Method for Vehicle Scheduling of Bus Line with Branch lines, Computers & Industrial Engineering, 178, 109103. 10.1016/j.cie.2023.109103
Liu Y., Cheng T. (2020), Understanding Public Transit Patterns with Open Geodemographics to Facilitate Public Transport Planning, Transportmetrica A: Transport Science, 16(1), 76-103. 10.1080/23249935.2018.1493549
Lu C., Gao L., Huang Y. (2022), Exploring Travel Patterns and Static Rebalancing Strategies for Dockless Bike-Sharing Systems From Multi-Source Data: A Framework and Case Study, Transportation Letters, 1-14. 10.1080/19427867.2022.2051798
Ma J., Yang Y., Guan W., Wang F., Liu T., Tu W. et al. (2017), Large-Scale Demand Driven Design of a Customized Bus Network: A Methodological Framework and Beijing Case Study. Journal of Advanced Transportation, 2017, 3865701. 10.1155/2017/3865701
Meert Wannes, Hendrickx Kilian, Van Craenendonck Toon, Robberechts Pieter, Blockeel Hendrik, Davis Jesse (2020), DTAIDistance, v2.3.10.
Moon S.D., Kim D.K., Kho S.Y., Cho S.H. (2021), Performance Measurement and Determination of Introduction Criteria for Peak Demand Responsive Transit Service, J. Korean Soc. Transp., 39(1), Korean Society of Transportation, 100-114. 10.7470/jkst.2021.39.1.100
Nakanishi W., Yamaguchi H., Fukuda D. (2018), Feature Extraction of Inter-Region Travel Pattern Using Random Matrix Theory and Mobile Phone Location Data, Transportation Research Procedia, 34, 115-122. 10.1016/j.trpro.2018.11.022
Nourbakhsh S. M., Ouyang Y. (2012), A Structured Flexible Transit System for Low Demand Areas, Transportation Research Part B: Methodological, 46(1), 204-216. 10.1016/j.trb.2011.07.014
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O. et al. (2011), Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12, 2825-2830.
Potts J., Marshall M., Crockett E., Washington J. (2010), A Guide for Planning and Operating Flexible Public Transportation Services.
Qiu G., Song R., He S., Xu W., Jiang M. (2019), Clustering Passenger Trip Data for the Potential Passenger Investigation and Line Design of Customized Commuter Bus, IEEE Transactions on Intelligent Transportation Systems, 20(9), 3351-3360. 10.1109/TITS.2018.2875466
Quadrifoglio L., Li X. (2009), A Methodology to Derive the Critical Demand Density for Designing and Operating Feeder Transit Services, Transportation Research Part B: Methodological, 43(10), 922-935. 10.1016/j.trb.2009.04.003
Rafiq R., McNally M. G. (2021), Heterogeneity in Activity-Travel Patterns of Public Transit Users: An Application of Latent Class Analysis, Transportation Research Part A: Policy and Practice, 152, 1-18. 10.1016/j.tra.2021.07.011
Sander J., Ester M., Kriegel H.-P., Xu X. (1998), Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications, Data Mining and Knowledge Discovery, 2(2), 169-194. 10.1023/A:1009745219419
Schofer Joseph L. (2023), Mass Transit. Encyclopedia Britannica.
Seodaemun-gu (2022), 2022 Seodaemun Statistical Yearbook.
Seoul (2022), Seoul Transportation in 2021.
Seoul (2023), Seoul Moving Population Data.
Tang J., Bi W., Liu F., Zhang W. (2021), Exploring Urban Travel Patterns Using Density-Based Clustering with Multi-Attributes from Large-Scaled Vehicle Trajectories, Physica A: Statistical Mechanics and Its Applications, 561, 3125301. 10.1016/j.physa.2020.125301
Tang X., Yang J., Lin X., He F., Si J. (2023), Dynamic Operations of an Integrated Mobility Service System of Fixed-Route Transits and Flexible Electric Buses, Transportation Research Part E: Logistics and Transportation Review, 173, 103081. 10.1016/j.tre.2023.103081
Tormene P., Giorgino T., Quaglini S., Stefanelli M. (2009), Matching Incomplete Time Series with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabilitation, Artificial Intelligence in Medicine, 45(1), 11-34. 10.1016/j.artmed.2008.11.00719111449
Tuerhong G., Kim S. B. (2014), Gower Distance-Based Multivariate Control Charts for A Mixture of Continuous and Categorical Variables, Expert Systems with Applications, 41(4, Part 2), 1701-1707. 10.1016/j.eswa.2013.08.068
Tuydes-Yaman H., Kocak B., Karagumus E., Dalkic-Melek G. (2023), Boarding Stop Assignment for Public Bus Trips Using Smart Card Data: Comparison of Two Algorithms, Transportation Research Procedia, 69, 472-479. 10.1016/j.trpro.2023.02.197
Wan L., Tang J., Wang L., Schooling J. (2021), Understanding Non-Commuting Travel Demand of Car Commuters - Insights from ANPR Trip Chain Data in Cambridge, Transport Policy, 106, 76-87. 10.1016/j.tranpol.2021.03.021
Wang H., Li J., Wang P., Teng J., Loo B. P. Y. (2023), Adaptability Analysis Methods of Demand Responsive Transit: A Review and Future Directions, Transport Reviews, 43(4), 676-697. 10.1080/01441647.2023.2165574
Wang Y.-J., Kuo Y.-H., Huang G. Q., Gu W., Hu Y. (2022), Dynamic Demand-Driven Bike Station Clustering, Transportation Research Part E: Logistics and Transportation Review, 160, 102656. 10.1016/j.tre.2022.102656
Wilson C. (2008), Activity Patterns in space and Time: Calculating Representative Hagerstrand Trajectories, Transportation, 35(4), 485-499. 10.1007/s11116-008-9162-z
Yu Q., Zhang H., Li W., Song X., Yang D., Shibasaki R. (2020), Mobile Phone GPS Data in Urban Customized Bus: Dynamic Line Design and Emission Reduction Potentials Analysis, Journal of Cleaner Production, 272, 122471. 10.1016/j.jclepro.2020.122471
Zhao J., Qu Q., Zhang F., Xu C., Liu S. (2017), Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data, IEEE Transactions on Intelligent Transportation Systems, 18(11), 3135-3146. 10.1109/TITS.2017.2679179
Zhao S., Zhao K., Xia Y., Jia W. (2022), Hyper-Clustering Enhanced Spatio-Temporal Deep Learning for Traffic and Demand Prediction in Bike-Sharing Systems, Information Sciences, 612, 626-637. 10.1016/j.ins.2022.07.054
  • Publisher :Korean Society of Transportation
  • Publisher(Ko) :대한교통학회
  • Journal Title :Journal of Korean Society of Transportation
  • Journal Title(Ko) :대한교통학회지
  • Volume : 42
  • No :1
  • Pages :29-46
  • Received Date : 2023-10-31
  • Revised Date : 2023-11-07
  • Accepted Date : 2023-12-19