Article
Chen T., Shi X., Wong Y. D., Yu X. (2020), Predicting Lane-changing Risk Level Based on Vehicles' Space-series Features: A Pre-emptive Learning Approach, Transp. Res. Part C: Emerg. Technol., 116, Elsevier, 102646.
10.1016/j.trc.2020.102646Jeong D. H., Kim M. J., Kim H. K., Chung Y.S. (2021), Development and Evaluation of Centralized Autonomous Vehicle Mobility Service Using ADAS Data, J. Korean Soc. Transp., 39(5), Korean Society of Transportation, 631-642.
10.7470/jkst.2021.39.5.631Jiang C., Ren H., Ye X., Zhu J., Zeng H., Nan Y., Huo H. (2022), Object Detection from UAV Thermal Infrared Images and Videos Using YOLO Models, Int. J. Appl. Earth Obs. Geoinf., 112, Elsevier, 102912.
10.1016/j.jag.2022.102912Jokhio S., Dürr M., Bärgman J., Baumann M. (2024), Influence of Surrounding Traffic on Lane Change Dynamics: Insights from a Video-based Laboratory Study, Transp. Res. Part F: Traffic Psychol. Behav., 105, Elsevier, 87-98.
10.1016/j.trf.2024.06.025Ko E. J., Kim S. H., Kim H. J. (2021), Microscopic Traffic Analysis of Freeway Based on Vehicle Trajectory Data Using Drone Images, J. Korean Soc. Intell. Transp. Syst., 20(6), The Korean Society of Intelligent Transport Systems, 66-83.
10.12815/kits.2021.20.6.66Kim J. H., Han D. S. (2020), A Path Prediction Algorithm of Surrounding Vehicles Based on Sensor Fusion for Safe Lane Change, J. Korean Inst. Commun. Inf. Sci., 45(5), The Korean Institute of Communications and Information Sciences, 828-836.
10.7840/kics.2020.45.5.828Lee J. H., Hwang Y. H., Kwon H. J., Choi J. W., Lee J. T. (2023), Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos, IEMEK J. Embed. Syst. Appl., 18(3), The Institute of Embedded Engineering of Korea, 125-132.
Lee S. H., Kim D. K. (2023), Development of Rerouting Algorithm of Autonomous Vehicles for Mitigating Traffic Congestion in Mixed Traffic Environments, The 89th Conf. of KST, Korean Society of Transportation, 333-334.
Lertworawanich P. (2006), Safe-following Distances Based on the Car-following Model, In PIARC International Seminar on Intelligent Transport System (ITS) in Road Network Operations, Kuala Lumpur, Malaysia.
Liu Q., Zhang Y., Yang G. (2023), Small Unopened Cotton Boll Counting by Detection with MRF-YOLO in the Wild, Comput. Electron. Agric., 204, Elsevier, 107576.
10.1016/j.compag.2022.107576Lin T. Y., Maire M., Belongie S., Hays J., Perona P., Ramanan D., et al. (2014), Microsoft Coco: Common Objects in Context, In Comput. Vis. - ECCV 2014: 13th Eur. Conf., Part V 13, Springer, 740-755.
10.1007/978-3-319-10602-1_48Luo Y., Xiang Y., Cao K., Li K. (2016), A Dynamic Automated Lane Change Maneuver Based on Vehicle-to-Vehicle Communication, Transp. Res. Part C: Emerg. Technol., 62, Elsevier, 87-102.
10.1016/j.trc.2015.11.011Mozaffari S., Arnold E., Dianati M., Fallah S. (2022), Early Lane Change Prediction for Automated Driving Systems Using Multi-task Attention-based Convolutional Neural Networks, IEEE Trans. Intell. Veh., 7(3), IEEE, 758-770.
10.1109/TIV.2022.3161785Patel S., Griffin B., Kusano K., Corso J. J. (2018), Predicting Future Lane Changes of Other Highway Vehicles Using RNN-based Deep Models, arXiv preprint arXiv:1801.04340.
Redmon J., Divvala S., Girshick R., Farhadi A. (2016), You Only Look Once: Unified, Real-time Object Detection, In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., IEEE, 779-788.
10.1109/CVPR.2016.91Shawky M. (2020), Factors Affecting Lane Change Crashes, IATSS Res., 44(2), Elsevier, 155-161.
10.1016/j.iatssr.2019.12.002Song R., Li B. (2021), Surrounding Vehicles' Lane Change Maneuver Prediction and Detection for Intelligent Vehicles: A Comprehensive Review, IEEE Trans. Intell. Transp. Syst., 23(7), IEEE, 6046-6062.
10.1109/TITS.2021.3076164Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., et al. (2017), Attention Is All You Need, Adv. Neural Inf. Process. Syst., 30, 5998-6008.
Wissing C., Nattermann T., Glander K. H., Hass C., Bertram T. (2017), Lane Change Prediction by Combining Movement and Situation-based Probabilities, IFAC-PapersOnLine, 50(1), Elsevier, 3554-3559.
10.1016/j.ifacol.2017.08.960Xue Q., Xing Y., Lu J. (2022), An Integrated Lane Change Prediction Model Incorporating Traffic Context Based on Trajectory Data, Transp. Res. Part C: Emerg. Technol., 141, Elsevier, 103738.
10.1016/j.trc.2022.103738Yang L., Li X., Guan W., Zhang H. M., Fan L. (2018), Effect of Traffic Density on Drivers' Lane Change and Overtaking Maneuvers in Freeway Situations: A Driving Simulator-based Study, Traffic Inj. Prev., 19(6), Taylor & Francis, 594-600.
10.1080/15389588.2018.147147029757689Yuan R., Abdel-Aty M., Gu X., Zheng O., Xiang Q. (2023), A Unified Modeling Framework for Lane Change Intention Recognition and Vehicle Status Prediction, Physica A: Stat. Mech. Appl., 632, Elsevier, 129332.
10.1016/j.physa.2023.129332Zhang Y., Sun P., Jiang Y., Yu D., Weng F., Yuan Z., Wang X. (2022), Bytetrack: Multi-object Tracking by Associating Every Detection Box, In Eur. Conf. Comput. Vis., Springer Nature, 1-21.
10.1007/978-3-031-20047-2_1- Publisher :Korean Society of Transportation
- Publisher(Ko) :대한교통학회
- Journal Title :Journal of Korean Society of Transportation
- Journal Title(Ko) :대한교통학회지
- Volume : 42
- No :5
- Pages :551-564
- Received Date : 2024-05-23
- Revised Date : 2024-06-17
- Accepted Date : 2024-08-02
- DOI :https://doi.org/10.7470/jkst.2024.42.5.551