Article
Abdel-Aty M. A., Hassan H. M., Ahmed M., Al-Ghamdi A. S. (2012), Real-time Prediction of Visibility Related Crashes, Transportation Research Part C: Emerging Technologies, 24, 288-298.
10.1016/j.trc.2012.04.001Abdel-Aty M., Pande A. (2005), Identifying Crash Propensity using Specific Traffic Speed Conditions, Journal of Safety Research, 36(1), 97-108.
10.1016/j.jsr.2004.11.00215752487Abdel-Aty M., Pande A., Das A., Knibbe W. J. (2008), Assessing Safety on Dutch Freeways with Data from Infrastructure-based Intelligent Transportation Systems, Transportation Research Record, 2083(1), 153-161.
10.3141/2083-18Abdel-Aty M., Uddin N., Pande A. (2005), Split Models for Predicting Multivehicle Crashes during High-speed and Low-speed Operating Conditions on Freeways, Transportation Research Record, 1908(1), 51-58.
10.1177/0361198105190800107Abdel-Aty M., Uddin N., Pande A., Abdalla M. F., Hsia L. (2004), Predicting Freeway Crashes from Loop Detector Data by Matched Case-control Logistic Regression, Transportation Research Record, 1897(1), 88-95.
10.3141/1897-12Abou Elassad Z. E., Mousannif H., Al Moatassime H. (2020), A Real-time Crash Prediction Fusion Framework: An Imbalance-aware Strategy for Collision Avoidance Systems, Transportation Research Part C: Emerging Technologies, 118, 102708.
10.1016/j.trc.2020.102708Ahmed M., Abdel-Aty M. (2013), A Data Fusion Framework for Real-time Risk Assessment on Freeways, Transportation Research Part C: Emerging Technologies, 26, 203-213.
10.1016/j.trc.2012.09.002Assi K., Rahman S. M., Mansoor U., Ratrout N. (2020), Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol, International Journal of Environmental Research and Public Health, 17(15), 5497.
10.3390/ijerph1715549732751470PMC7432564Bagdadi O., Várhelyi A. (2013), Development of a Method for Detecting Jerks in Safety Critical Events, Accident Analysis & Prevention, 50, 83-91.
10.1016/j.aap.2012.03.03223200443Basso F., Basso L. J., Bravo F., Pezoa R. (2018), Real-time Crash Prediction in an Urban Expressway using Disaggregated Data, Transportation Research Part C: Emerging Technologies, 86, 202-219.
10.1016/j.trc.2017.11.014Basso F., Pezoa R., Varas M., Villalobos M. (2021), A Deep Learning Approach for Real-time Crash Prediction using Vehicle-by-vehicle Data, Accident Analysis & Prevention, 162, 106409.
10.1016/j.aap.2021.10640934600313Boser B. E., Guyon I. M., Vapnik V. N. (1992), A Training Algorithm for Optimal Margin Classifiers, In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152.
10.1145/130385.130401Cai Q., Abdel-Aty M., Yuan J., Lee J., Wu Y. (2020), Real-time Crash Prediction on Expressways using Deep Generative Models, Transportation Research Part C: Emerging Technologies, 117, 102697.
10.1016/j.trc.2020.102697Cheng Z., Yuan J., Yu B., Lu J., Zhao Y. (2022), Crash Risks Evaluation of Urban Expressways: A Case Study in Shanghai, IEEE Transactions on Intelligent Transportation Systems, 23(9), 15329-15339.
10.1109/TITS.2022.3140345Chevalier A. et al. (2017), Predictors of Older Drivers' Involvement in Rapid Deceleration Events, Accident Analysis & Prevention, 98, 312-319.
10.1016/j.aap.2016.10.01027810673Cui M. (2020), Introduction to the K-means Clustering Algorithm Based on the Elbow Method, Accounting, Auditing and Finance, 1(1), 5-8.
Dias C., Miska M., Kuwahara M., Warita H. (2009), Relationship between Congestion and Traffic Accidents on Expressways: An Investigation with Bayesian Belief Networks, In Proceedings of 40th Annual Meeting of Infrastructure Planning (JSCE).
Dingus, T. A. et al. (2006), The 100-car Naturalistic Driving Study, Phase Ii-results of the 100-car Field Experiment, United States, Department of Transportation, National Highway Traffic Safety Administration, No. DOT-HS- 810-593.
10.1037/e624282011-001Feng F., Bao S., Sayer J. R., Flannagan C., Manser M., Wunderlich R. (2017), Can Vehicle Longitudinal Jerk be used to Identify Aggressive Drivers? An Examination using Naturalistic Driving Data, Accident Analysis & Prevention, 104, 125-136.
10.1016/j.aap.2017.04.01228499141Formosa N., Quddus M., Ison S., Abdel-Aty M., Yuan J. (2020), Predicting Real-time Traffic Conflicts using Deep Learning, Accident Analysis & Prevention, 136, 105429.
10.1016/j.aap.2019.10542931931409Hossain M., Muromachi Y. (2012), A Bayesian Network Based Framework for Real-time Crash Prediction on the Basic Freeway Segments of Urban Expressways, Accident Analysis & Prevention, 45, 373-381.
10.1016/j.aap.2011.08.00422269521Huang T., Wang S., Sharma A. (2020), Highway Crash Detection and Risk Estimation using Deep Learning, Accident Analysis & Prevention, 135, 105392.
10.1016/j.aap.2019.10539231841865Huang Z., Gao Z., Yu R., Wang X., Yang K. (2017), Utilizing Latent Class Logit Model to Predict Crash Risk, In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), 161-165, IEEE.
10.1109/ICIS.2017.7959987Kamrani M., Arvin R., Khattak A. J. (2018), Extracting Useful Information from Basic Safety Message Data: An Empirical Study of Driving Volatility Measures and Crash Frequency at Intersections, Transportation Research Record, 2672(38), 290-301.
10.1177/0361198118773869Kim Y., Oh C., Choe B., Choi S., Kim K. (2018), Development of a Methodology for Detecting Intentional Aggressive Driving Events using Multi-agent Driving Simulations, J. Korean Soc. Transp., 36(1), Korean Society of Transportation, 51-65.
10.7470/jkst.2018.36.1.051Kim Y., Park J., Oh C. (2021), A Crash Prediction Method Based on Artificial Intelligence Techniques and Driving Behavior Event Data, Sustainability, 13(11), 6102.
10.3390/su13116102Lei T., Peng J., Liu X., Luo Q. (2021), Crash Prediction on Expressway Incorporating Traffic Flow Continuity Parameters Based on Machine Learning Approach, Journal of Advanced Transportation, 8820402.
10.1155/2021/8820402Li P., Abdel-Aty M. (2022), A Hybrid Machine Learning Model for Predicting Real-time Secondary Crash Likelihood, Accident Analysis & Prevention, 165, 106504.
10.1016/j.aap.2021.10650434844080Lin L., Wang Q., Sadek A. W. (2015), A Novel Variable Selection Method Based on Frequent Pattern Tree for Real-time Traffic Accident Risk Prediction, Transportation Research Part C: Emerging Technologies, 55, 444-459.
10.1016/j.trc.2015.03.015MacQueen J. (1967, June), Some Methods for Classification and Analysis of Multivariate Observations, In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281-297.
Mohamed M. G., Saunier N., Miranda-Moreno L. F., Ukkusuri S. V. (2013), A Clustering Regression Approach: A Comprehensive Injury Severity Analysis of Pedestrian-vehicle Crashes in New York, US and Montreal, Canada, Safety science, 54, 27-37.
10.1016/j.ssci.2012.11.001Oh C., Oh J. S., Ritchie S. G. (2005), Real-time Hazardous Traffic Condition Warning System: Framework and Evaluation, IEEE Transactions on Intelligent Transportation Systems, 6(3), 265-272.
10.1109/TITS.2005.853693Park S., Son S. O., Park J., Oh C., Hong S. (2021), Using Vehicle Data as a Surrogate for Highway accident Data, In Proceedings of the Institution of Civil Engineers-Municipal Engineer, 174(2), 67-74, Thomas Telford Ltd.
10.1680/jmuen.20.00012Shi Q., Abdel-Aty M. (2015), Big Data Applications in Real-time Traffic Operation and Safety Monitoring and Improvement on Urban Expressways, Transportation Research Part C: Emerging Technologies, 58, 380-394.
10.1016/j.trc.2015.02.022Wang L., Abdel-Aty M., Lee J., Shi Q. (2019), Analysis of Real-time Crash Risk for Expressway Ramps using Traffic, Geometric, Trip Generation, and Socio-demographic Predictors, Accident Analysis & Prevention, 122, 378-384.
10.1016/j.aap.2017.06.00328689932Wang L., Abdel-Aty M., Shi Q., Park J. (2015), Real-time Crash Prediction for Expressway Weaving Segments, Transportation Research Part C: Emerging Technologies, 61, 1-10.
10.1016/j.trc.2015.10.008World Health Organization (2019), Global Status Report on Road Safety 2018, World Health Organization.
Wu M., Shan D., Wang Z., Sun X., Liu J., Sun M. (2019), A Bayesian Network Model for Real-time Crash Prediction Based on Selected Variables by Random Forest, In 2019 5th International Conference on Transportation Information and Safety (ICTIS), 670-677, IEEE.
10.1109/ICTIS.2019.8883694Wu Y., Abdel-Aty, M., Cai, Q., Lee, J., Park, J. (2018), Developing an Algorithm to Assess the Rear-end Collision Risk under Fog Conditions using Real-time Data, Transportation Research Part C: Emerging Technologies, 87, 11-25.
10.1016/j.trc.2017.12.012Xia Y., Qin Y., Li X., Xie J. (2022), Risk Identification and Conflict Prediction from Videos Based on TTC-ML of a Multi-lane Weaving Area, Sustainability, 14(8), 4620.
10.3390/su14084620Xu C., Wang W., Liu P., Guo R., Li Z. (2014), Using the Bayesian Updating Approach to Improve the Spatial and Temporal Transferability of Real-time Crash Risk Prediction Models, Transportation Research Part C: Emerging Technologies, 38, 167-176.
10.1016/j.trc.2013.11.020Yang K., Wang X., Yu R. (2018), A Bayesian Dynamic Updating Approach for Urban Expressway Real-time Crash Risk Evaluation, Transportation Research Part C: Emerging Technologies, 96, 192-207.
10.1016/j.trc.2018.09.020You J., Wang J., Guo J. (2017), Real-time Crash Prediction on Freeways using Data Mining and Emerging Techniques, Journal of Modern Transportation, 25(2), 116-123.
10.1007/s40534-017-0129-7Yu R., Abdel-Aty M. (2013), Utilizing Support Vector Machine in Real-time Crash Risk Evaluation, Accident Analysis & Prevention, 51, 252-259.
10.1016/j.aap.2012.11.02723287112- Publisher :Korean Society of Transportation
- Publisher(Ko) :대한교통학회
- Journal Title :Journal of Korean Society of Transportation
- Journal Title(Ko) :대한교통학회지
- Volume : 42
- No :3
- Pages :331-347
- Received Date : 2024-04-19
- Revised Date : 2024-05-08
- Accepted Date : 2024-06-10
- DOI :https://doi.org/10.7470/jkst.2024.42.3.331