All Issue

2024 Vol.42, Issue 3 Preview Page

Article

30 June 2024. pp. 331-347
Abstract
References
1

Abdel-Aty M. A., Hassan H. M., Ahmed M., Al-Ghamdi A. S. (2012), Real-time Prediction of Visibility Related Crashes, Transportation Research Part C: Emerging Technologies, 24, 288-298.

10.1016/j.trc.2012.04.001
2

Abdel-Aty M., Pande A. (2005), Identifying Crash Propensity using Specific Traffic Speed Conditions, Journal of Safety Research, 36(1), 97-108.

10.1016/j.jsr.2004.11.00215752487
3

Abdel-Aty M., Pande A., Das A., Knibbe W. J. (2008), Assessing Safety on Dutch Freeways with Data from Infrastructure-based Intelligent Transportation Systems, Transportation Research Record, 2083(1), 153-161.

10.3141/2083-18
4

Abdel-Aty M., Uddin N., Pande A. (2005), Split Models for Predicting Multivehicle Crashes during High-speed and Low-speed Operating Conditions on Freeways, Transportation Research Record, 1908(1), 51-58.

10.1177/0361198105190800107
5

Abdel-Aty M., Uddin N., Pande A., Abdalla M. F., Hsia L. (2004), Predicting Freeway Crashes from Loop Detector Data by Matched Case-control Logistic Regression, Transportation Research Record, 1897(1), 88-95.

10.3141/1897-12
6

Abou Elassad Z. E., Mousannif H., Al Moatassime H. (2020), A Real-time Crash Prediction Fusion Framework: An Imbalance-aware Strategy for Collision Avoidance Systems, Transportation Research Part C: Emerging Technologies, 118, 102708.

10.1016/j.trc.2020.102708
7

Ahmed M., Abdel-Aty M. (2013), A Data Fusion Framework for Real-time Risk Assessment on Freeways, Transportation Research Part C: Emerging Technologies, 26, 203-213.

10.1016/j.trc.2012.09.002
8

Assi K., Rahman S. M., Mansoor U., Ratrout N. (2020), Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol, International Journal of Environmental Research and Public Health, 17(15), 5497.

10.3390/ijerph1715549732751470PMC7432564
9

Bagdadi O., Várhelyi A. (2013), Development of a Method for Detecting Jerks in Safety Critical Events, Accident Analysis & Prevention, 50, 83-91.

10.1016/j.aap.2012.03.03223200443
10

Basso F., Basso L. J., Bravo F., Pezoa R. (2018), Real-time Crash Prediction in an Urban Expressway using Disaggregated Data, Transportation Research Part C: Emerging Technologies, 86, 202-219.

10.1016/j.trc.2017.11.014
11

Basso F., Pezoa R., Varas M., Villalobos M. (2021), A Deep Learning Approach for Real-time Crash Prediction using Vehicle-by-vehicle Data, Accident Analysis & Prevention, 162, 106409.

10.1016/j.aap.2021.10640934600313
12

Boser B. E., Guyon I. M., Vapnik V. N. (1992), A Training Algorithm for Optimal Margin Classifiers, In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152.

10.1145/130385.130401
13

Breiman L. (2001), Random Forests, Machine Learning, 45, 5-32.

10.1023/A:1010933404324
14

Cai Q., Abdel-Aty M., Yuan J., Lee J., Wu Y. (2020), Real-time Crash Prediction on Expressways using Deep Generative Models, Transportation Research Part C: Emerging Technologies, 117, 102697.

10.1016/j.trc.2020.102697
15

Cheng Z., Yuan J., Yu B., Lu J., Zhao Y. (2022), Crash Risks Evaluation of Urban Expressways: A Case Study in Shanghai, IEEE Transactions on Intelligent Transportation Systems, 23(9), 15329-15339.

10.1109/TITS.2022.3140345
16

Chevalier A. et al. (2017), Predictors of Older Drivers' Involvement in Rapid Deceleration Events, Accident Analysis & Prevention, 98, 312-319.

10.1016/j.aap.2016.10.01027810673
17

Cui M. (2020), Introduction to the K-means Clustering Algorithm Based on the Elbow Method, Accounting, Auditing and Finance, 1(1), 5-8.

18

Dias C., Miska M., Kuwahara M., Warita H. (2009), Relationship between Congestion and Traffic Accidents on Expressways: An Investigation with Bayesian Belief Networks, In Proceedings of 40th Annual Meeting of Infrastructure Planning (JSCE).

19

Dingus, T. A. et al. (2006), The 100-car Naturalistic Driving Study, Phase Ii-results of the 100-car Field Experiment, United States, Department of Transportation, National Highway Traffic Safety Administration, No. DOT-HS- 810-593.

10.1037/e624282011-001
20

Feng F., Bao S., Sayer J. R., Flannagan C., Manser M., Wunderlich R. (2017), Can Vehicle Longitudinal Jerk be used to Identify Aggressive Drivers? An Examination using Naturalistic Driving Data, Accident Analysis & Prevention, 104, 125-136.

10.1016/j.aap.2017.04.01228499141
21

Formosa N., Quddus M., Ison S., Abdel-Aty M., Yuan J. (2020), Predicting Real-time Traffic Conflicts using Deep Learning, Accident Analysis & Prevention, 136, 105429.

10.1016/j.aap.2019.10542931931409
22

Hossain M., Muromachi Y. (2012), A Bayesian Network Based Framework for Real-time Crash Prediction on the Basic Freeway Segments of Urban Expressways, Accident Analysis & Prevention, 45, 373-381.

10.1016/j.aap.2011.08.00422269521
23

Huang T., Wang S., Sharma A. (2020), Highway Crash Detection and Risk Estimation using Deep Learning, Accident Analysis & Prevention, 135, 105392.

10.1016/j.aap.2019.10539231841865
24

Huang Z., Gao Z., Yu R., Wang X., Yang K. (2017), Utilizing Latent Class Logit Model to Predict Crash Risk, In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), 161-165, IEEE.

10.1109/ICIS.2017.7959987
25

Kamrani M., Arvin R., Khattak A. J. (2018), Extracting Useful Information from Basic Safety Message Data: An Empirical Study of Driving Volatility Measures and Crash Frequency at Intersections, Transportation Research Record, 2672(38), 290-301.

10.1177/0361198118773869
26

Kim Y., Oh C., Choe B., Choi S., Kim K. (2018), Development of a Methodology for Detecting Intentional Aggressive Driving Events using Multi-agent Driving Simulations, J. Korean Soc. Transp., 36(1), Korean Society of Transportation, 51-65.

10.7470/jkst.2018.36.1.051
27

Kim Y., Park J., Oh C. (2021), A Crash Prediction Method Based on Artificial Intelligence Techniques and Driving Behavior Event Data, Sustainability, 13(11), 6102.

10.3390/su13116102
28

Lei T., Peng J., Liu X., Luo Q. (2021), Crash Prediction on Expressway Incorporating Traffic Flow Continuity Parameters Based on Machine Learning Approach, Journal of Advanced Transportation, 8820402.

10.1155/2021/8820402
29

Li P., Abdel-Aty M. (2022), A Hybrid Machine Learning Model for Predicting Real-time Secondary Crash Likelihood, Accident Analysis & Prevention, 165, 106504.

10.1016/j.aap.2021.10650434844080
30

Lin L., Wang Q., Sadek A. W. (2015), A Novel Variable Selection Method Based on Frequent Pattern Tree for Real-time Traffic Accident Risk Prediction, Transportation Research Part C: Emerging Technologies, 55, 444-459.

10.1016/j.trc.2015.03.015
31

MacQueen J. (1967, June), Some Methods for Classification and Analysis of Multivariate Observations, In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281-297.

32

Mohamed M. G., Saunier N., Miranda-Moreno L. F., Ukkusuri S. V. (2013), A Clustering Regression Approach: A Comprehensive Injury Severity Analysis of Pedestrian-vehicle Crashes in New York, US and Montreal, Canada, Safety science, 54, 27-37.

10.1016/j.ssci.2012.11.001
33

Oh C., Oh J. S., Ritchie S. G. (2005), Real-time Hazardous Traffic Condition Warning System: Framework and Evaluation, IEEE Transactions on Intelligent Transportation Systems, 6(3), 265-272.

10.1109/TITS.2005.853693
34

Park S., Son S. O., Park J., Oh C., Hong S. (2021), Using Vehicle Data as a Surrogate for Highway accident Data, In Proceedings of the Institution of Civil Engineers-Municipal Engineer, 174(2), 67-74, Thomas Telford Ltd.

10.1680/jmuen.20.00012
35

Shi Q., Abdel-Aty M. (2015), Big Data Applications in Real-time Traffic Operation and Safety Monitoring and Improvement on Urban Expressways, Transportation Research Part C: Emerging Technologies, 58, 380-394.

10.1016/j.trc.2015.02.022
36

Wang L., Abdel-Aty M., Lee J., Shi Q. (2019), Analysis of Real-time Crash Risk for Expressway Ramps using Traffic, Geometric, Trip Generation, and Socio-demographic Predictors, Accident Analysis & Prevention, 122, 378-384.

10.1016/j.aap.2017.06.00328689932
37

Wang L., Abdel-Aty M., Shi Q., Park J. (2015), Real-time Crash Prediction for Expressway Weaving Segments, Transportation Research Part C: Emerging Technologies, 61, 1-10.

10.1016/j.trc.2015.10.008
38

World Health Organization (2019), Global Status Report on Road Safety 2018, World Health Organization.

39

Wu M., Shan D., Wang Z., Sun X., Liu J., Sun M. (2019), A Bayesian Network Model for Real-time Crash Prediction Based on Selected Variables by Random Forest, In 2019 5th International Conference on Transportation Information and Safety (ICTIS), 670-677, IEEE.

10.1109/ICTIS.2019.8883694
40

Wu Y., Abdel-Aty, M., Cai, Q., Lee, J., Park, J. (2018), Developing an Algorithm to Assess the Rear-end Collision Risk under Fog Conditions using Real-time Data, Transportation Research Part C: Emerging Technologies, 87, 11-25.

10.1016/j.trc.2017.12.012
41

Xia Y., Qin Y., Li X., Xie J. (2022), Risk Identification and Conflict Prediction from Videos Based on TTC-ML of a Multi-lane Weaving Area, Sustainability, 14(8), 4620.

10.3390/su14084620
42

Xu C., Wang W., Liu P., Guo R., Li Z. (2014), Using the Bayesian Updating Approach to Improve the Spatial and Temporal Transferability of Real-time Crash Risk Prediction Models, Transportation Research Part C: Emerging Technologies, 38, 167-176.

10.1016/j.trc.2013.11.020
43

Yang K., Wang X., Yu R. (2018), A Bayesian Dynamic Updating Approach for Urban Expressway Real-time Crash Risk Evaluation, Transportation Research Part C: Emerging Technologies, 96, 192-207.

10.1016/j.trc.2018.09.020
44

You J., Wang J., Guo J. (2017), Real-time Crash Prediction on Freeways using Data Mining and Emerging Techniques, Journal of Modern Transportation, 25(2), 116-123.

10.1007/s40534-017-0129-7
45

Yu R., Abdel-Aty M. (2013), Utilizing Support Vector Machine in Real-time Crash Risk Evaluation, Accident Analysis & Prevention, 51, 252-259.

10.1016/j.aap.2012.11.02723287112
46

Yuan Z., He K., Yang Y. (2022), A Roadway Safety Sustainable Approach: Modeling for Real-time Traffic Crash with Limited Data and Its Reliability Verification, Journal of Advanced Transportation, 1570521.

10.1155/2022/1570521
47

Zhai B., Lu J., Wang Y., Wu B. (2020), Real-time Prediction of Crash Risk on Freeways under Fog Conditions, International Journal of Transportation Science and Technology, 9(4), 287-298.

10.1016/j.ijtst.2020.02.001
Information
  • Publisher :Korean Society of Transportation
  • Publisher(Ko) :대한교통학회
  • Journal Title :Journal of Korean Society of Transportation
  • Journal Title(Ko) :대한교통학회지
  • Volume : 42
  • No :3
  • Pages :331-347
  • Received Date : 2024-04-19
  • Revised Date : 2024-05-08
  • Accepted Date : 2024-06-10